Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2013
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Some upper bounds for 3-rainbow index of graphs

Authors: Liu, Tingting; Hu, Yumei;

Some upper bounds for 3-rainbow index of graphs

Abstract

A tree $T$, in an edge-colored graph $G$, is called {\em a rainbow tree} if no two edges of $T$ are assigned the same color. A {\em $k$-rainbow coloring}of $G$ is an edge coloring of $G$ having the property that for every set $S$ of $k$ vertices of $G$, there exists a rainbow tree $T$ in $G$ such that $S\subseteq V(T)$. The minimum number of colors needed in a $k$-rainbow coloring of $G$ is the {\em $k$-rainbow index of $G$}, denoted by $rx_k(G)$. In this paper, we consider 3-rainbow index $rx_3(G)$ of $G$. We first show that for connected graph $G$ with minimum degree $��(G)\geq 3$, the tight upper bound of $rx_3(G)$ is $rx_3(G[D])+4$, where $D$ is the connected 2-dominating set of $G$. And then we determine a tight upper bound for $K_{s,t}(3\leq s\leq t)$ and a better bound for $(P_5,C_5)$-free graphs. Finally, we obtain a sharp bound for 3-rainbow index of general graphs.

7 pages 1 figures

Related Organizations
Keywords

05C05, 05C15, 05C69, 05C85, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green