
Minichromosome maintenance protein 5 (MCM5) is a critical cell cycle regulator; its role in DNA replication is well known, but whether it is involved in the regulation of organogenesis in a cell cycle-independent way, is far from clear. In this study, we found that a loss of mcm5 function resulted in a mildly smaller liver, but that mcm5 overexpression led to liver bifida. Further, the data showed that mcm5 overexpression delayed endodermal migration in the ventral–dorsal axis and induced the liver bifida. Cell cycle analysis showed that a loss of mcm5 function, but not overexpression, resulted in cell cycle delay and increased cell apoptosis during gastrulation, implying that liver bifida was not the result of a cell cycle defect. In terms of its mechanism, our data proves that mcm5 represses the expression of cxcr4a, which sequentially causes a decrease in the expression of itgb1b during gastrulation. The downregulation of the cxcr4a-itgb1b cascade leads to an endodermal migration delay during gastrulation, as well as to the subsequent liver bifida during liver morphogenesis. In conclusion, our results suggest that in a cell cycle-independent way, mcm5 works as a gene expression regulator, either partially and directly, or indirectly repressing the expression of cxcr4a and the downstream gene itgb1b, to coordinate endodermal migration during gastrulation and liver location during liver organogenesis.
DNA Replication, liver bifida, Receptors, CXCR4, endodermal migration, Cell Cycle, Cell Cycle Proteins, cxcr4a, Cell Cycle Checkpoints, Microbiology, QR1-502, Article, cell cycle, <i>mcm5</i>; cell cycle; cxcr4a; endodermal migration; liver bifida, <i>mcm5</i>, Cell Division, Adaptor Proteins, Signal Transducing, Signal Transduction
DNA Replication, liver bifida, Receptors, CXCR4, endodermal migration, Cell Cycle, Cell Cycle Proteins, cxcr4a, Cell Cycle Checkpoints, Microbiology, QR1-502, Article, cell cycle, <i>mcm5</i>; cell cycle; cxcr4a; endodermal migration; liver bifida, <i>mcm5</i>, Cell Division, Adaptor Proteins, Signal Transducing, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
