Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amnioserosa is required for dorsal closure in Drosophila

Authors: Anne, Scuderi; Anthea, Letsou;

Amnioserosa is required for dorsal closure in Drosophila

Abstract

AbstractDorsal closure in the fruit fly Drosophila melanogaster is a complex morphogenetic process, driven by sequential signaling cascades and involving multiple forces, which contribute to cell movements and rearrangements as well as to changes in cell shape. During closure, lateral epidermal cells elongate along the dorsoventral axis and subsequently spread dorsally to cover the embryonic dorsal surface. Amnioserosal cells, which are the original occupants of the most dorsal position in the developing embryo, constrict during closure; thus, the increase in epidermal surface area is accommodated by a reduction in the amnioserosal surface area. Several of the epidermal requirements for closure have been established in functional assays. In contrast, amnioserosal requirements for closure have remained elusive, in part because laser ablation and clonal approaches are limited to only subsets of amnioserosal cells. Here, we report our use of the UAS‐GAL4 system to target expression of the cell autonomous toxin Ricin‐A to all cells of the amnioserosa. We show that ablation of the amnioserosa leads to clear defects in dorsal closure and, thus, directly demonstrate a role for the amnioserosa in dorsal closure. We also show that DJNK (Drosophila Jun N‐terminal kinase) signaling, an epidermal trigger of closure, is unaffected by amnioserosal ablation. These data, together with our demonstration that amnioserosal ablated and Dpp signaling mutant embryos exhibit shared loss‐of‐function phenotypes, point to a requirement for the amnioserosa in dorsal closure that is downstream of Dpp, perhaps as part of a paracrine response to this signaling cascade. Developmental Dynamics 232:791–800, 2005. © 2005 Wiley‐Liss, Inc.

Related Organizations
Keywords

Embryo, Nonmammalian, Transcription, Genetic, Green Fluorescent Proteins, JNK Mitogen-Activated Protein Kinases, Gene Expression Regulation, Developmental, Ricin, Models, Biological, Animals, Genetically Modified, Epidermal Cells, Cell Movement, Genes, Reporter, Mutation, Animals, Drosophila Proteins, Drosophila, Amnion, Epidermis, Cell Shape, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
bronze