Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1998 . Peer-reviewed
Data sources: Crossref
Development
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo

Authors: James B. Skeath;

The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo

Abstract

ABSTRACT The segmented portion of the Drosophila embryonic central nervous system develops from a bilaterally symmetrical, segmentally reiterated array of 30 unique neural stem cells, called neuroblasts. The first 15 neuroblasts form about 30-60 minutes after gastrulation in two sequential waves of neuroblast segregation and are arranged in three dorsoventral columns and four anteroposterior rows per hemisegment. Each neuroblast acquires a unique identity, based on gene expression and the unique and nearly invariant cell lineage it produces. Recent experiments indicate that the segmentation genes specify neuroblast identity along the AP axis. However, little is known as to the control of neuroblast identity along the DV axis. Here, I show that the Drosophila EGF receptor (encoded by the DER gene) promotes the formation, patterning and individual fate specification of early forming neuroblasts along the DV axis. Specifically, I use molecular markers that identify particular neuroectodermal domains, all neuroblasts or individual neuroblasts, to show that in DER mutant embryos (1) intermediate column neuroblasts do not form, (2) medial column neuroblasts often acquire identities inappropriate for their position, while (3) lateral neuroblasts develop normally. Furthermore, I show that active DER signaling occurs in the regions from which the medial and intermediate neuroblasts will later delaminate. In addition, I demonstrate that the concomitant loss of rhomboid and vein yield CNS phenotypes indistinguishable from DER mutant embryos, even though loss of either gene alone yields minor CNS phenotypes. These results demonstrate that DER plays a critical role during neuroblast formation, patterning and specification along the DV axis within the developing Drosophila embryonic CNS.

Related Organizations
Keywords

Central Nervous System, Neurons, Stem Cells, Gene Expression Regulation, Developmental, Membrane Proteins, Genes, Insect, Gastrula, Models, Biological, ErbB Receptors, Phenotype, Calcium-Calmodulin-Dependent Protein Kinases, Mutation, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Body Patterning, Neuregulins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?