<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 23223229
pmc: PMC3554902
Recruitment of the growth factor receptor-bound protein 2 (Grb2) by the plasma membrane-associated adapter protein downstream of kinase 3 (Dok-3) attenuates signals transduced by the B cell antigen receptor (BCR). Here we describe molecular details of Dok-3/Grb2 signal integration and function, showing that the Lyn-dependent activation of the BCR transducer kinase Syk is attenuated by Dok-3/Grb2 in a site-specific manner. This process is associated with the SH3 domain-dependent translocation of Dok-3/Grb2 complexes into BCR microsignalosomes and augmented phosphorylation of the inhibitory Lyn target SH2 domain-containing inositol 5' phosphatase. Hence, our findings imply that Dok-3/Grb2 modulates the balance between activatory and inhibitory Lyn functions with the aim to adjust BCR signaling efficiency.
Microscopy, Confocal, Receptors, Antigen, B-Cell, Lymphocyte Activation, Mass Spectrometry, Enzyme Activation, src-Family Kinases, Animals, Humans, Calcium, Calcium Signaling, Amino Acids, Chickens, Adaptor Proteins, Signal Transducing, GRB2 Adaptor Protein, Signal Transduction
Microscopy, Confocal, Receptors, Antigen, B-Cell, Lymphocyte Activation, Mass Spectrometry, Enzyme Activation, src-Family Kinases, Animals, Humans, Calcium, Calcium Signaling, Amino Acids, Chickens, Adaptor Proteins, Signal Transducing, GRB2 Adaptor Protein, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |