Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Differentiation
Article
Data sources: UnpayWall
Differentiation
Article . 2013 . Peer-reviewed
Data sources: Crossref
Differentiation
Article . 2014
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development

Authors: Larbuisson, Arnaud; Dalcq, Julia; Martial, Joseph; Muller, Marc;

Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development

Abstract

Cranial cartilage derives mainly from cranial neural crest cells and its formation requires fibroblast growth factor (Fgf) signaling for early differentiation and survival of developing chondrocytes as well as patterning of the endodermal pouches. Here, we investigate the role of Fgf receptors in chondrocyte maturation at later stages, beyond 24 hpf. Using inducible expression of a dominant-negative Fgf receptor, we show that Fgf signaling is required around 30 hpf for correct cartilage formation. The receptor genes fgfr1a and fgr2 are expressed in pharyngeal endodermal pouches after 24 hpf or 26 hpf, respectively. Depletion of any of these two receptors by microinjection of antisense morpholinos results in severe defects in cartilage formation at 4 dpf and a decrease in expression of the late chondrocyte markers barx1 and runx2b. Although endodermal pouches are correctly formed and patterned, receptor knock down leads to decreased expression of runx3, egr1 and sox9b in this tissue, while expression of fsta, coding for a secreted BMP/Tgfß inhibitor, is clearly increased. Rescue experiments revealed that each Fgfr1a or Fgfr2 receptor is able to compensate for the loss of the other. Thus, we show that minimal amounts of Fgfr1a or Fgfr2 are required to initiate a regulatory cascade in pharyngeal endoderm reducing expression of fsta, thereby allowing correct BMP signaling to the maturing chondrocytes of the head cartilage.

Country
Belgium
Related Organizations
Keywords

Fgfr, Endoderm, Skull, Gene Expression Regulation, Developmental, Cell Differentiation, Biochimie, biophysique & biologie moléculaire, Life sciences, Signaling, Cartilage, Sciences du vivant, Pharyngeal Muscles, BMP, Animals, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Chondrogenesis, Zebrafish, Biochemistry, biophysics & molecular biology, Body Patterning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Green
bronze