Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete Control of TRPV4 Channel Function in the Distal Nephron by Protein Kinases A and C

Authors: Mykola, Mamenko; Oleg L, Zaika; Nabila, Boukelmoune; Jonathan, Berrout; Roger G, O'Neil; Oleh, Pochynyuk;

Discrete Control of TRPV4 Channel Function in the Distal Nephron by Protein Kinases A and C

Abstract

We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca(2+)]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca(2+)]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca(2+)]i responses and greatly increased basal [Ca(2+)]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane.

Keywords

Indoles, Morpholines, Colforsin, Nephrons, In Vitro Techniques, Isoquinolines, Cyclic AMP-Dependent Protein Kinases, Enzyme Activation, Maleimides, Mice, Inbred C57BL, Perfusion, Mice, Microscopy, Fluorescence, Phorbol Esters, Animals, Calcium, Kidney Tubules, Collecting, Fura-2, Protein Kinase Inhibitors, Protein Kinase C

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
gold