
arXiv: 2007.08610
The color - stellar mass-to-light ratio relation (CMLR) is a widely accepted tool to estimate the stellar mass (M*) of a galaxy. However, an individual CMLR tends to give distinct M* for a same galaxy when it is applied in different bands. Examining five representative CMLRs from literature, we find that the difference in M* predicted in different bands from optical to near-infrared by a CMLR is 0.1-0.3 dex. Therefore, based on a sample of low surface brightness galaxies (LSBG) that covers a wide range of color and luminosity, we re-calibrated each original CMLR in r, i, z, J, H, and K bands to give internally self-consistent M* for a same galaxy. The g-r is the primary color indicator in the re-calibrated relations which show little dependenceon red (r - z) or near-infrared (J - K) colors.Additionally, the external discrepancies in the originally predicted stellar mass-to-light ratio (M*/L) by the five independent CMLRs have been greatly reduced after re-calibration, especially in near-infrared bands, implying that the near-infrared luminosities are more robust to predict M*/L. For each CMLR, the re-calibrated relations provided in this work could produce internally self-consistent M* from divergent photometric bands, and are extensions of the re-calibrations from Johnson-Cousin filter system by the pioneering work of McGaugh & Schombert (2014) to SDSS filter system.
19 pages,11 figures, 7 tables, accepted for publication in The Astronomical Journal
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
