
pmid: 7853407
The X-ray structures of the maltose bound forms of two insertion/deletion mutants of the Escherichia coli maltodextrin binding protein, MalE322 and MalE178, have been determined and refined. MalE322 involves a one residue deletion, two residue insertion in a hinge segment connecting the two (N and C) domains of the protein, an area already identified as being critical for the correct functioning of the protein. MalE178 involves a nine residue deletion and two residue insertion in a helix at the periphery of the C-domain. The function of both mutant proteins is similar to the wild-type, although MalE322 increases the ability to transport maltose and maltodextrin whilst inhibiting the ability of the cell to grow on dextrins. Both proteins exhibit very localized and conservative conformational changes due to their mutations. The structure of MalE322 shows some deformation of the third hinge strand, indicating the likely cause of change in its biochemistry. MalE178 is stable and its activity virtually unchanged from the wild-type. This is most likely due to the long distance of the mutation from the binding site and conservation of the number of interactions between the area around the deletion site and the main body of the protein.
Models, Molecular, Escherichia coli Proteins, Molecular Sequence Data, Biological Transport, Crystallography, X-Ray, Protein Structure, Secondary, Bacterial Proteins, Polysaccharides, Periplasmic Binding Proteins, Mutation, Escherichia coli, Amino Acid Sequence, Carrier Proteins, Maltose
Models, Molecular, Escherichia coli Proteins, Molecular Sequence Data, Biological Transport, Crystallography, X-Ray, Protein Structure, Secondary, Bacterial Proteins, Polysaccharides, Periplasmic Binding Proteins, Mutation, Escherichia coli, Amino Acid Sequence, Carrier Proteins, Maltose
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
