Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://hal.archives-ouvertes....
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Conference object . 2017
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL - CNAM
Conference object . 2017
Data sources: HAL - CNAM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mobility Prediction in Vehicular Networks: An Approach Through Hybrid Neural Networks Under Uncertainty

Authors: Banerjee, Soumya; Bouzefrane, Samia; Mühlethaler, Paul;

Mobility Prediction in Vehicular Networks: An Approach Through Hybrid Neural Networks Under Uncertainty

Abstract

Conventionally, the exposure regarding knowledge of the inter vehicle link duration is a significant parameter in Vehicular Networks to estimate the delay during the failure of a specific link during the transmission. However, the mobility and dynamics of the nodes is considerably higher in a smart city than on highways and thus could emerge a complex random pattern for the investigation of the link duration, referring all sorts of uncertain conditions. There are existing link duration estimation models, which perform linear operations under linear relationships without imprecise conditions. Anticipating, the requirement to tackle the uncertain conditions in Vehicular Network s, this paper presents a hybrid neural network-driven mobility prediction model. The proposed hybrid neural network comprises a Fuzzy Constrained Boltzmann machine (FCBM), which allows the random patterns of several vehicles in a single time stamp to be learned. The several dynamic parameters, which may make the contexts of Vehicular Networks uncertain, could be vehicle speed at the moment of prediction, the number of leading vehicles, the average speed of the leading vehicle, the distance to the subsequent intersection of traffic roadways and the number of lanes in a road segment. In this paper, a novel method of hybrid intelligence is initiated to tackle such uncertainty. Here, the Fuzzy Constrained Boltzmann Machine (FCBM) is a stochastic graph model that can learn joint probability distribution over its visible units (say n) and hidden feature units (say m). It is evident that there must be a prime driving parameter of the holistic network, which will monitor the interconnection of weights and biases of the Vehicular Network for all these features. The highlight of this paper is that the prime driving parameter to control the learning process should be a fuzzy number, as fuzzy logic is used to represent the vague and and uncertain parameters. Therefore, if uncertainty exists due to the random patterns 1 2 Soumya Banerjee, Samia Bouzefrane, Paul Muhlethaler caused by vehicle mobility, the proposed Fuzzy Constrained Boltzmann Machine could remove the noise from the data representation. Thus, the proposed model will be able to predict robustly the mobility in VANET, referring any instance of link failure under Vehicular Network paradigm.

Keywords

VANET, Mobility Prediction, Uncertainty, Fuzzy Con- strained Boltzmann Machine, Vehicular Network, [INFO] Computer Science [cs], Link Failure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green