Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Research
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY NC
Data sources: PubMed Central
Cardiovascular Research
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway

Authors: Chen, Wen; Gaßner, Birgit; Börner, Sebastian; Nikolaev, Viacheslav O.; Schlegel, Nicolas; Waschke, Jens; Steinbronn, Nadine; +2 Authors

Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway

Abstract

Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP.Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1(-/-) mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains.ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.

Country
Germany
Keywords

Male, Mice, Knockout, ddc:610, Caveolin 1, Endothelial Cells, Original Articles, Caveolae, Endocytosis, Rats, Capillary Permeability, Mice, Inbred C57BL, Mice, Albumins, Animals, Transcytosis, Receptors, Atrial Natriuretic Factor, Atrial Natriuretic Factor, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Green
hybrid