
We follow the consequences of internal equilibrium in non-equilibrium systems that has been introduced recently [Phys. Rev. E 81, 051130 (2010)] to obtain the generalization of Maxwell's relation and the Clausius-Clapeyron relation that are normally given for equilibrium systems. The use of Jacobians allow for a more compact way to address the generalized Maxwell relations; the latter are available for any number of internal variables. The Clausius-Clapeyron relation in the subspace of observables show not only the non-equilibrium modification but also the modification due to internal variables that play a dominant role in glasses. Real systems do not directly turn into glasses (GL) that are frozen structures from the supercooled liquid state L; there is an intermediate state (gL) where the internal variables are not frozen. Thus, there is no single glass transition. A system possess several kinds of glass transitions, some conventional (L \rightarrow gL; gL\rightarrow GL) in which the state change continuously and the transition mimics a continuous or second order transition, and some apparent (L\rightarrow gL; L\rightarrow GL) in which the free energies are discontinuous so that the transition appears as a zeroth order transition, as discussed in the text. We evaluate the Prigogine-Defay ratio �� in the subspace of the observables at these transitions. We find that it is normally different from 1, except at the conventional transition L\rightarrow gL, where ��=1 regardless of the number of internal variables.
42 pages, 3 figures, citations corrected
Statistical Mechanics (cond-mat.stat-mech), Entropy, FOS: Physical sciences, Mathematical Physics (math-ph), Models, Theoretical, 80, 82, Models, Chemical, Thermodynamics, Computer Simulation, Glass, Condensed Matter - Statistical Mechanics, Mathematical Physics
Statistical Mechanics (cond-mat.stat-mech), Entropy, FOS: Physical sciences, Mathematical Physics (math-ph), Models, Theoretical, 80, 82, Models, Chemical, Thermodynamics, Computer Simulation, Glass, Condensed Matter - Statistical Mechanics, Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
