Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling

Authors: Michael Wegner; Ueli Suter; Christian Paratore; Derk E. Goerich; Lukas Sommer;

Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling

Abstract

The transcription factor Sox10 is required for proper development of various neural crest-derived cell types. Several lineages including melanocytes, autonomic and enteric neurons, and all subtypes of peripheral glia are missing in mice homozygous for Sox10 mutations. Moreover, haploinsufficiency of Sox10 results in neural crest defects that cause Waardenburg/Hirschsprung disease in humans. We provide evidence that the cellular basis to these phenotypes is likely to be a requirement for Sox10 by neural crest stem cells before lineage segregation. Cell death is increased in undifferentiated, postmigratory neural crest cells that lack Sox10, suggesting a role of Sox10 in the survival of neural crest cells. This function is mediated by neuregulin, which acts as a survival signal for postmigratory neural crest cells in a Sox10-dependent manner. Furthermore, Sox10 is required for glial fate acquisition, as the surviving mutant neural crest cells are unable to adopt a glial fate when challenged with different gliogenic conditions. In Sox10 heterozygous mutant neural crest cells, survival appears to be normal, while fate specifications are drastically affected. Thereby, the fate chosen by a mutant neural crest cell is context dependent. Our data indicate that combinatorial signaling by Sox10, extracellular factors such as neuregulin 1, and local cell-cell interactions is involved in fine-tuning lineage decisions by neural crest stem cells. Failures in fate decision processes might thus contribute to the etiology of Waardenburg/Hirschsprung disease.

Keywords

Cell Survival, SOXE Transcription Factors, Neuregulin-1, Stem Cells, High Mobility Group Proteins, Cell Differentiation, DNA-Binding Proteins, Mice, Phenotype, Neural Crest, Mutation, Animals, Humans, Hirschsprung Disease, RNA, Messenger, Neuroglia, Cells, Cultured, In Situ Hybridization, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    301
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
301
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?