<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 20143049
Calcium (Ca(2+)) is an important ion that is necessary for the activation of different DNA repair mechanisms. However, the mechanism by which DNA repair and Ca(2+) homeostasis cooperate remains unclear. We undertook a systems biology approach to verify the relationship between proteins associated with Ca(2+) homeostasis and DNA repair for Saccharomyces cerevisiae. Our data indicate that Pmr1p, a Ca(2+) transporter of Golgi complex, interacts with Cod1p, which regulates Ca(2+) levels in the endoplasmic reticulum (ER), and with Rad4p, which is a nucleotide excision repair (NER) protein. This information was used to construct single and double mutants defective for Pmr1p, Cod1p, and Rad4p followed by cytotoxic, cytostatic, and cell cycle arrest analyses after cell exposure to different concentrations of 4-nitroquinoline 1-oxide (4-NQO). The results indicated that cod1Delta, cod1Deltarad4Delta, and cod1Deltapmr1Delta strains have an elevated sensitivity to 4-NQO when compared to its wild-type (WT) strain. Moreover, both cod1Deltapmr1Delta and cod1Deltarad4Delta strains have a strong arrest at G(2)/M phases of cell cycle after 4-NQO treatment, while pmr1Deltarad4Delta have a similar sensitivity and cell cycle arrest profile when compared to rad4Delta after 4-NQO exposure. Taken together, our results indicate that deletion in Golgi- and ER-associated Ca(2+) transporters affect the repair of 4-NQO-induced DNA damage.
Saccharomyces cerevisiae Proteins, DNA Repair, Systems Biology, Cell Cycle, Golgi Apparatus, Membrane Transport Proteins, Calcium-Transporting ATPases, Saccharomyces cerevisiae, Endoplasmic Reticulum, 4-Nitroquinoline-1-oxide, DNA-Binding Proteins, Mutagenesis, Protein Interaction Mapping, Homeostasis, Calcium, Gene Deletion, Molecular Chaperones
Saccharomyces cerevisiae Proteins, DNA Repair, Systems Biology, Cell Cycle, Golgi Apparatus, Membrane Transport Proteins, Calcium-Transporting ATPases, Saccharomyces cerevisiae, Endoplasmic Reticulum, 4-Nitroquinoline-1-oxide, DNA-Binding Proteins, Mutagenesis, Protein Interaction Mapping, Homeostasis, Calcium, Gene Deletion, Molecular Chaperones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |