Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurochem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N‐terminally cleaved tau containing four microtubule‐binding repeats

Authors: Wray, S; Saxton, M; Anderton, B H; Hanger, D P;

Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N‐terminally cleaved tau containing four microtubule‐binding repeats

Abstract

AbstractTangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho‐specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP‐tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C‐terminal tau fragment (tau35), lacking the N‐terminus of tau but containing four microtubule‐binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over‐represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto‐temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer’s disease and Pick’s disease brain. Our findings suggest the aggregatory characteristics of PSP‐tau differ from those of insoluble tau in Alzheimer’s disease brain and this might be related to the presence of a C‐terminal cleavage product of tau.

Keywords

Brain Chemistry, 570, Molecular Sequence Data, Terminal Repeat Sequences, 610, tau Proteins, Microtubules, Peptide Fragments, Solubility, Humans, Amino Acid Sequence, Supranuclear Palsy, Progressive, Phosphorylation, Protein Processing, Post-Translational, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze