Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cosmology and Astroparticle Physics
Article . 2022 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Particle production during inflation: a Bayesian analysis with CMB data from Planck 2018

Authors: Naik, Suvedha Suresh; Furuuchi, Kazuyuki; Chingangbam, Pravabati;

Particle production during inflation: a Bayesian analysis with CMB data from Planck 2018

Abstract

Abstract A class of inflationary models that involve rapid bursts of particle productions predict observational signatures, such as bump-like features in the primordial scalar power spectrum. In this work, we analyze such models by comparing their predictions with the latest CMB data from Planck 2018. We consider two scenarios of particle production. The first one is a simple scenario consisting of a single burst of particle production during observable inflation. The second one consists of multiple bursts of particle production that lead to a series of bump-like features in the primordial power spectrum. We find that the second scenario of the multi-bump model gives better fit to the CMB data compared to the concordance ΛCDM model. We carried out model comparisons using Bayesian evidences. From the observational constraints on the amplitude of primordial features of the multi-bump model, we find that the dimensionless coupling parameter g responsible for particle production is bound to be g < 0.05.

Keywords

High Energy Physics - Theory, High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green