Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Psychiatr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biological Psychiatry
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biological Psychiatry
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics

Authors: Susmita Malwade; Janina Gasthaus; Carmelo Bellardita; Matej Andelic; Borna Moric; Irina Korshunova; Ole Kiehn; +2 Authors

Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics

Abstract

A number of rare copy number variants (CNVs) have been linked to neurodevelopmental disorders. However, because CNVs encompass many genes, it is often difficult to identify the mechanisms that lead to developmental perturbations.We used 15q13.3 microdeletion to propose and validate a novel strategy to predict the impact of CNV genes on brain development that could further guide functional studies. We analyzed single-cell transcriptomics datasets containing cortical interneurons to identify their developmental vulnerability to 15q13.3 microdeletion, which was validated in mouse models.We found that Klf13-but not other 15q13.3 genes-is expressed by precursors and neuroblasts in the medial and caudal ganglionic eminences during development, with a peak of expression at embryonic day (E)13.5 and E18.5, respectively. In contrast, in the adult mouse brain, Klf13 expression is negligible. Using Df(h15q13.3)/+ and Klf13+/- embryos, we observed a precursor subtype-specific impairment in proliferation in the medial ganglionic eminence and caudal ganglionic eminence at E13.5 and E17.5, respectively, corresponding to vulnerability predicted by Klf13 expression patterns. Finally, Klf13+/- mice showed a layer-specific decrease in parvalbumin and somatostatin cortical interneurons accompanied by changes in locomotor and anxiety-related behavior.We show that the impact of 15q13.3 microdeletion on precursor proliferation is grounded in a reduction in Klf13 expression. The lack of Klf13 in Df(h15q13.3)/+ cortex might be the major reason for perturbed density of cortical interneurons. Thus, the behavioral defects seen in 15q13.3 microdeletion could stem from a developmental perturbation owing to selective vulnerability of cortical interneurons during sensitive stages of their development.

Country
Denmark
Related Organizations
Keywords

Chromosomes, Human, Pair 15, Mice, Interneurons, Seizures, Intellectual Disability, Animals, Chromosome Disorders, Chromosome Deletion, Transcriptome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
hybrid