
An optimal gut microbiota influences many beneficial processes in the metazoan host. However, the molecular mechanisms that mediate and function in symbiont-induced host responses have not yet been fully characterized. Here, we report that cellular ROS enzymatically generated in response to contact with lactobacilli in both mice and Drosophila has salutary effects against exogenous insults to the intestinal epithelium via the activation of Nrf2 responsive cytoprotective genes. These data show that the xenobiotic-inducible Nrf2 pathway participates as a signaling conduit between the prokaryotic symbiont and the eukaryotic host. Indeed, our data imply that the capacity of lactobacilli to induce redox signaling in epithelial cells is a highly conserved hormetic adaptation to impel cellular conditioning to exogenous biotic stimuli. These data also highlight the role the microbiota plays in eukaryotic cytoprotective pathways and may have significant implications in the characterization of a eubiotic microbiota.
QH301-705.5, Lacticaseibacillus rhamnosus, NF-E2-Related Factor 2, Mice, Oxidative Stress, Animals, Drosophila, Biology (General), Intestinal Mucosa, Lactobacillus plantarum, Signal Transduction
QH301-705.5, Lacticaseibacillus rhamnosus, NF-E2-Related Factor 2, Mice, Oxidative Stress, Animals, Drosophila, Biology (General), Intestinal Mucosa, Lactobacillus plantarum, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 205 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
