Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 1998
versions View all 4 versions
addClaim

double-time Is a Novel Drosophila Clock Gene that Regulates PERIOD Protein Accumulation

Authors: Price, Jeffrey L; Blau, Justin; Rothenfluh, Adrian; Abodeely, Marla; Kloss, Brian; Young, Michael W;

double-time Is a Novel Drosophila Clock Gene that Regulates PERIOD Protein Accumulation

Abstract

We have isolated three alleles of a novel Drosophila clock gene, double-time (dbt). Short- (dbtS) and long-period (dbtL) mutants alter both behavioral rhythmicity and molecular oscillations from previously identified clock genes, period and timeless. A third allele, dbtP, causes pupal lethality and eliminates circadian cycling of per and tim gene products in larvae. In dbtP mutants, PER proteins constitutively accumulate, remain hypophosphorylated, and no longer depend on TIM proteins for their accumulation. We propose that the normal function of DOUBLETIME protein is to reduce the stability and thus the level of accumulation of monomeric PER proteins. This would promote a delay between per/tim transcription and PER/TIM complex function, which is essential for molecular rhythmicity.

Related Organizations
Keywords

Light, Biochemistry, Genetics and Molecular Biology(all), Brain, Nuclear Proteins, Genes, Insect, Period Circadian Proteins, Darkness, Circadian Rhythm, Gene Expression Regulation, Biological Clocks, Mutagenesis, Larva, DNA Transposable Elements, Animals, Drosophila Proteins, Insect Proteins, Drosophila, RNA, Messenger, Alleles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    658
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
658
Top 1%
Top 0.1%
Top 0.1%
hybrid