Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Empirical Software E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Empirical Software Engineering
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Empirical Software Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2020
License: CC BY
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the assessment of software defect prediction models via ROC curves

Authors: Sandro Morasca; Luigi Lavazza;

On the assessment of software defect prediction models via ROC curves

Abstract

AbstractSoftware defect prediction models are classifiers often built by setting a threshold t on a defect proneness model, i.e., a scoring function. For instance, they classify a software module non-faulty if its defect proneness is below t and positive otherwise. Different values of t may lead to different defect prediction models, possibly with very different performance levels. Receiver Operating Characteristic (ROC) curves provide an overall assessment of a defect proneness model, by taking into account all possible values of t and thus all defect prediction models that can be built based on it. However, using a defect proneness model with a value of t is sensible only if the resulting defect prediction model has a performance that is at least as good as some minimal performance level that depends on practitioners’ and researchers’ goals and needs. We introduce a new approach and a new performance metric (the Ratio of Relevant Areas) for assessing a defect proneness model by taking into account only the parts of a ROC curve corresponding to values of t for which defect proneness models have higher performance than some reference value. We provide the practical motivations and theoretical underpinnings for our approach, by: 1) showing how it addresses the shortcomings of existing performance metrics like the Area Under the Curve and Gini’s coefficient; 2) deriving reference values based on random defect prediction policies, in addition to deterministic ones; 3) showing how the approach works with several performance metrics (e.g., Precision and Recall) and their combinations; 4) studying misclassification costs and providing a general upper bound for the cost related to the use of any defect proneness model; 5) showing the relationships between misclassification costs and performance metrics. We also carried out a comprehensive empirical study on real-life data from the SEACRAFT repository, to show the differences between our metric and the existing ones and how more reliable and less misleading our metric can be.

Country
Italy
Keywords

Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Green
hybrid