<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 6194159
Specific antibodies directed against each polypeptide component of yeast RNA polymerases A or B were prepared and their affinity spectrum determined by protein blot immunodetection. The majority of enzyme A or B subunits were specifically recognized by their respective antiserum. A direct correspondence was established between the polypeptides immunologically related in the three forms of RNA polymerases A, B, and C by reacting the different antibodies with enzymes subunits transferred to a nitrocellulose membrane. Subunit-specific antibodies and antibodies to native enzymes A and B were used to probe the activity of RNA polymerases A, B, and C. Based on DNA protection experiments, the largest subunit of enzymes A and B as well as the common subunit ABC23 appear to be involved in DNA binding.
Immunoassay, Epitopes, Kinetics, Macromolecular Substances, Antigen-Antibody Complex, DNA-Directed RNA Polymerases, Saccharomyces cerevisiae, Cross Reactions, Antibodies
Immunoassay, Epitopes, Kinetics, Macromolecular Substances, Antigen-Antibody Complex, DNA-Directed RNA Polymerases, Saccharomyces cerevisiae, Cross Reactions, Antibodies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |