Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Mysore...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Apoptotic Programs Are Determined during Lineage Commitment of CD4+ T Effectors: Selective Regulation of T Effector-Memory Apoptosis by Inducible Nitric Oxide Synthase

Authors: Rasika Venkataraman; Divya Purushothaman; Divya Purushothaman; Apurva Sarin; Nimi Marcel; Nimi Marcel; Megha Garg; +1 Authors

Apoptotic Programs Are Determined during Lineage Commitment of CD4+ T Effectors: Selective Regulation of T Effector-Memory Apoptosis by Inducible Nitric Oxide Synthase

Abstract

Abstract Lineage-committed T effectors generated in response to Ag during the inflammatory phase are destined to die during termination of the immune response. We present evidence to suggest that molecular signatures of lineage commitment are reflected in apoptotic cascades activated in CD4+ T effectors. Exemplifying this, ablation of inducible NO synthase (iNOS) protected effector-memory T (TEM) cells, but not TNaive or central-memory T cells, activated in vitro, from apoptosis triggered by cytokine deprivation. Furthermore, attrition of T effectors generated in the secondary, but not the primary, response to Ag was substantially reduced in mice, which received iNOS inhibitors. Distinct patterns of iNOS expression were revealed in wild-type TEM effectors undergoing apoptosis, and ablation of iNOS protein in primary and TEM wild-type effectors confirmed observations made in iNOS−/− cells. Describing molecular correlates of this dependence, mitochondrial damage, activation of the protein Bax, and release from mitochondria of the apoptosis-inducing factor were selectively abrogated in iNOS−/− TEM effectors. Suggesting that iNOS dependence was linked to the functional identity of T cell subsets, both iNOS induction and apoptosis were compromised in IFN-γ−/− TEM effectors, which mirrored the response patterns of iNOS−/− TEM. Collectively, these observations suggest that programs regulating deletion and differentiation are closely integrated and likely encoded during lineage commitment of T effectors.

Country
India
Keywords

CD4-Positive T-Lymphocytes, Male, Mice, Knockout, 570, Mice, 129 Strain, 610, Nitric Oxide Synthase Type II, Apoptosis, Cell Differentiation, Mice, Transgenic, Lymphocyte Activation, Mice, Inbred C57BL, Mice, T-Lymphocyte Subsets, Animals, Cell Lineage, Female, Immunologic Memory, Cells, Cultured, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
bronze