
arXiv: 2009.14235
handle: 20.500.11850/476210
AbstractThe nature of the effective interaction responsible for pairing in the high-temperature superconducting cuprates remains unsettled. This question has been studied extensively using the simplified single-band Hubbard model, which does not explicitly consider the orbital degrees of freedom of the relevant CuO2 planes. Here, we use a dynamical cluster quantum Monte Carlo approximation to study the orbital structure of the pairing interaction in the three-band Hubbard model, which treats the orbital degrees of freedom explicitly. We find that the interaction predominately acts between neighboring copper orbitals, but with significant additional weight appearing on the surrounding bonding molecular oxygen orbitals. By explicitly comparing these results to those from the simpler single-band Hubbard model, our study provides strong support for the single-band framework for describing superconductivity in the cuprates.
Superconductivity (cond-mat.supr-con), Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Condensed Matter - Superconductivity, TA401-492, FOS: Physical sciences, Atomic physics. Constitution and properties of matter, Materials of engineering and construction. Mechanics of materials, QC170-197
Superconductivity (cond-mat.supr-con), Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Condensed Matter - Superconductivity, TA401-492, FOS: Physical sciences, Atomic physics. Constitution and properties of matter, Materials of engineering and construction. Mechanics of materials, QC170-197
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
