Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research.fiarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2023 . Peer-reviewed
Data sources: Research.fi
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Lipid Research
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism

Authors: Kastaniotis Alexander; Wierenga Rikkert; Haapalainen Antti; Hiltunen Kalervo; Chen Zhijun;

Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism

Abstract

The highly conserved fatty acid de novo synthesis pathway in mitochondria proceeds in an acyl carrier protein-dependent manner through a discrete set of enzymes. Saccharomyces cerevisiae has served as a model for studies of mitochondrial fatty acid synthesis type II (FAS II) and as a template for identification of mammalian components. Inactivation of mitochondrial FAS II in yeast results in respiratory deficiency and loss of cytochromes. The pathway produces the octanoyl-ACP substrate for lipoic acid synthesis, but several pieces of evidence indicate that it is capable of the generation of longer fatty acids. A number of structures of mitochondrial FAS II enzymes have been published in the past few years, allowing for a comparison with their prokaryotic counterparts, several of which have been described as promising targets for antibiotics. Recently, novel links between mitochondrial FAS and RNA processing in yeast and vertebrates have been reported. In S. cerevisiae, deficiency in mitochondrial FAS results in failure of maturation of mitochondrial RNAse P, while, in mammals, mitochondrial 3-hydroxyacyl thioester dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript. The first publications linking mitochondrial FAS II to disease states in mammals are emerging.

Related Organizations
Keywords

Fatty Acid Desaturases, Fatty Acids, Transferases (Other Substituted Phosphate Groups), Saccharomyces cerevisiae, Ribonuclease P, Mitochondria, Alcohol Oxidoreductases, Bacterial Proteins, Acyl-Carrier Protein S-Malonyltransferase, Fatty Acid Synthase, Type II, 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase, Enoyl-CoA Hydratase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%