Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metal Science and He...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metal Science and Heat Treatment
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analog Studies of Thermomechanical Fatigue and Abrasive Wear of Cast and Forged Steels for “Autoforge” Dies

Authors: Kolesnikov M.; Mironova Y.; Mukhametzyanova G.; Novikova I.; Novikov V.;

Analog Studies of Thermomechanical Fatigue and Abrasive Wear of Cast and Forged Steels for “Autoforge” Dies

Abstract

Processes of thermomechanical fatigue and abrasive wear of suspension-cast precipitation-hardening ferrite-carbide steel 30T6NTiC-1.5 and standard steel 4Kh5MFS are studied. The dominant kinds of fracture typical for dies for semisolid stamping are determined. The factors and parameters of cyclic temperature and force loading are shown to produce a selective action on the competing kinds of damage of the die steels. A comparative analysis of the properties of the steels is performed. Steel 30T6NTiC-1.5 is shown to have substantial advantages over steel 4Kh5FMS traditionally used for making "Autoforge" dies. © 2014 Springer Science+Business Media New York.

Related Organizations
Keywords

dimensionless criteria of similarity, thermomechanical fatigue, criteria of cyclic viscosity, suspension-cast steel, dominant kinds of fracture of dies, performance functional, 620, 510, dies for semisolid stamping, abrasive wear, loading factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!