Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Surveys in Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surveys in Geophysics
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model Parameterization and PP-Wave Amplitude Versus Angle and Azimuth (AVAZ) Direct Inversion for Fracture Quasi-Weaknesses in Weakly Anisotropic Elastic Media

Authors: Xinpeng Pan; Guangzhi Zhang;

Model Parameterization and PP-Wave Amplitude Versus Angle and Azimuth (AVAZ) Direct Inversion for Fracture Quasi-Weaknesses in Weakly Anisotropic Elastic Media

Abstract

Homogeneous isotropic or vertically transverse isotropic rocks containing a single set of aligned, vertical fractures exhibits an effective long-wavelength horizontally transverse isotropy (HTI) or orthorhombic anisotropy. The estimation for properties of subsurface fractures has significant application in characterization of naturally fractured rocks. The purpose of this work is to demonstrate an approach of amplitude versus angle and azimuth (AVAZ) direct inversion for fracture characterization utilizing the observable wide-azimuth seismic reflection data in weakly anisotropic elastic media. The simplest single fracture system is HTI model. Much attention has been devoted to the weak-contrast and weak-anisotropy HTI model due to its significance for reservoir characterization. Treating the fractures as linear-slip interfaces, we begin with the derivation for perturbations of stiffness matrix at a planar weak-contrast interface separating two weakly anisotropic HTI half-spaces that share the same fracture normal, as a function of background elastic moduli and fracture parameters. Using the perturbation matrix and scattering function, we then derive a linearized PP-wave reflection coefficient of a weakly HTI medium in terms of P- and S-wave moduli, density, and fracture weaknesses, which builds a linearized relationship between the fracture parameters and reflection coefficient with the priority calculation for the azimuth of fracture normal based on the least square ellipse fitting method. Finally, we reformulate the reflectivity caused by weakness differences to parameterize the weaknesses for the so-called quasi-weaknesses and propose a method of Bayesian AVAZ direct inversion in seismic detection of subsurface fractures. Cauchy and Gaussian probability distribution are used for the a priori information of model parameters and the likelihood function, and the maximum a posteriori estimate of quasi-weaknesses is reasonably estimated with the nonlinear iteratively reweighted least squares algorithm. Synthetic and real data illustrate the applicability of the proposed AVAZ inversion method in fracture characterization.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!