Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

p27Kip1 Mediates Addiction of Ovarian Cancer Cells to MYCC (c-MYC) and Their Dependence on MYC Paralogs

Authors: Tulsiram, Prathapam; Alexey, Aleshin; Yinghui, Guan; Joe W, Gray; G Steven, Martin;

p27Kip1 Mediates Addiction of Ovarian Cancer Cells to MYCC (c-MYC) and Their Dependence on MYC Paralogs

Abstract

The MYCC (c-MYC) gene is amplified in 30-60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27(Kip1) and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27(Kip1) or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27(Kip1) knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27(Kip1). They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs.

Keywords

Ovarian Neoplasms, Cell Cycle, Cyclin-Dependent Kinase 2, Cyclin A, Proto-Oncogene Proteins c-myc, Cell Line, Tumor, Animals, Humans, Protein Isoforms, Female, RNA, Small Interfering, Protein Kinase Inhibitors, Cyclin-Dependent Kinase Inhibitor p27, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Average
gold