Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cell Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Journal of Cell Science
Article . 2010
Data sources: KNAW Pure
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function

Authors: Beqqali, Abdelaziz; Monshouwer-Kloots, Jantine; Monteiro, Rui; Welling, Maaike; Bakkers, Jeroen; Ehler, Elisabeth; Verkleij, Arie; +2 Authors

CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function

Abstract

In recent years, the perception of Z-disc function has changed from a passive anchor for myofilaments that allows transmission of force, to a dynamic multicomplex structure, capable of sensing and transducing extracellular signals. Here, we describe a new Z-disc protein, which we named CHAP (cytoskeletal heart-enriched actin-associated protein), expressed in differentiating heart and skeletal muscle in vitro and in vivo. Interestingly, in addition to its sarcomeric localization, CHAP was also able to translocate to the nucleus. CHAP was associated with filamentous actin in the cytoplasm and the nucleus when expressed ectopically in vitro, but in rat neonatal cardiomyocytes, CHAP disrupted the subcellular localization of α-actinin, another Z-disc protein. More importantly, knockdown of CHAP in zebrafish resulted in aberrant cardiac and skeletal muscle development and function. These findings suggest that CHAP is a critical component of the sarcomere with an important role in muscle development.

Keywords

Cell Nucleus, Sarcomeres, 570, Microfilament Proteins, Active Transport, Cell Nucleus, 500, Heart, Zebrafish Proteins, Embryo, Mammalian, Muscle Development, Rats, Animals, Genetically Modified, Mice, Gene Knockdown Techniques, COS Cells, Chlorocebus aethiops, Animals, Myocytes, Cardiac, Muscle, Skeletal, Zebrafish, CHAP Synpo2l Z-disc Heart development Muscle Sarcomere alpha-actinin dilated cardiomyopathy lim protein nuclear import pdz domains kinase-c in-vitro zebrafish binding cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze