Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Image and Vision Computing
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EDS pooling layer

Authors: Pravendra Singh; Prem Raj; Vinay P. Namboodiri;
Abstract

Abstract Convolutional neural networks (CNNs) have been the source of recent breakthroughs in many vision tasks. Feature pooling layers are being widely used in CNNs to reduce the spatial dimensions of the feature maps of the hidden layers. This gives CNNs the property of spatial invariance and also results in speed-up and reduces over-fitting. However, this also causes significant information loss. All existing feature pooling layers follow a one-step procedure for spatial pooling, which affects the overall performance due to significant information loss. Not much work has been done to do efficient feature pooling operation in CNNs. To reduce the loss of information at this critical operation of the CNNs, we propose a new EDS layer (Expansion Downsampling learnable-Scaling) to replace the existing pooling mechanism. We propose a two-step procedure to minimize the information loss by increasing the number of channels in pooling operation. We also use feature scaling in the proposed EDS layer to highlight the most relevant channels/feature-maps. Our results show a significant improvement over the generally used pooling methods such as MaxPool, AvgPool, and StridePool (strided convolutions with stride > 1). We have done the experiments on image classification and object detection task. ResNet-50 with our proposed EDS layer has performed comparably to ResNet-152 with stride pooling on the ImageNet dataset.

Country
United Kingdom
Related Organizations
Keywords

/dk/atira/pure/subjectarea/asjc/1700/1711; name=Signal Processing, Convolutional neural network, Deep learning, Object recognition, /dk/atira/pure/subjectarea/asjc/1700/1707; name=Computer Vision and Pattern Recognition, Feature pooling layer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green