Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Chemical Neurosc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Chemical Neuroscience
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solution Nuclear Magnetic Resonance Structures of ATTTT and ATTTC Pentanucleotide Repeats Associated with SCA37 and FAMEs

Authors: Jinxia Li; Liqi Wan; Yang Wang; Yawen Chen; Hung Kay Lee; Sik Lok Lam; Pei Guo;

Solution Nuclear Magnetic Resonance Structures of ATTTT and ATTTC Pentanucleotide Repeats Associated with SCA37 and FAMEs

Abstract

Expansions of ATTTT and ATTTC pentanucleotide repeats in the human genome are recently found to be associated with at least seven neurodegenerative diseases, including spinocerebellar ataxia type 37 (SCA37) and familial adult myoclonic epilepsy (FAME) types 1, 2, 3, 4, 6, and 7. The formation of non-B DNA structures during some biological processes is thought as a causative factor for repeat expansions. Yet, the structural basis for these pyrimidine-rich ATTTT and ATTTC repeat expansions remains elusive. In this study, we investigated the solution structures of ATTTT and ATTTC repeats using nuclear magnetic resonance spectroscopy. Here, we reveal that ATTTT and ATTTC repeats can form a highly compact minidumbbell structure at the 5'-end using their first two repeats. The high-resolution structure of two ATTTT repeats was determined, showing a regular TTTTA pentaloop and a quasi TTTT/A pentaloop. Furthermore, the minidumbbell structure could escape from proofreading by the Klenow fragment of DNA polymerase I when it was located at five or more base pairs away from the priming site, leading to a small-scale repeat expansion. Results of this work improve our understanding of ATTTT and ATTTC repeat expansions in SCA37 and FAMEs, and provide high-resolution structural information for rational drug design.

Related Organizations
Keywords

Adult, Magnetic Resonance Spectroscopy, Humans, Spinocerebellar Ataxias, Nerve Tissue Proteins, Epilepsies, Myoclonic, Magnetic Resonance Imaging, Microsatellite Repeats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!