Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Function of calcium‐dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development

Authors: Sören Werner; Tina Romeis; Julia Legen; Hartmut H. Hilger; Waltraud X. Schulze; Susanne Matschi;

Function of calcium‐dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development

Abstract

SummaryAfter a period of vegetative growth, plants undergo a developmental switch to the reproductive phase, inducing the transition to bolting, elongation of the inflorescence and flowering. We have identified calcium‐dependent protein kinase CPK28 from Arabidopsis thaliana as a regulatory component that controls stem elongation and vascular development. In two independent mutant alleles of cpk28, a reduction of stem elongation, accompanied by shorter leaf petioles and enhanced anthocyanin levels, is observed upon the transition to the generative phase. Anatomical analysis revealed an altered vascular pattern characterised by fewer xylem tracheary elements but at the same time increased lignification and secondary growth. Coincident with these morphological changes, cpk28 mutants showed altered expression of NAC transcriptional regulators NST1 and NST3 as well as of GA3ox1, a key regulator of gibberellic acid homeostasis. In vitro protein kinase activity of CPK28 is strictly calcium‐dependent. Furthermore, CPK28 is phosphorylated in vivo at several sites. Site‐specific amino acid substitutions at these phosphorylation sites resulted in reduced in vitro activity. However, when introduced into a cpk28 mutant background, wild‐type and phosphorylation site variants, but not kinase‐inactive variants of CPK28 complemented the morphological and developmental defects. Our data identify CPK28 as a developmentally controlled regulator for coordinated stem elongation and secondary growth.

Keywords

Plant Stems, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Plants, Genetically Modified, Lignin, Gibberellins, Anthocyanins, Amino Acid Substitution, Gene Expression Regulation, Plant, Xylem, Mutation, Amino Acid Sequence, Phosphorylation, Protein Kinases, Plant Shoots, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 1%
Top 10%
Top 10%
bronze