<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Radiation causes soft tissue complications that include fibrosis and deficient wound healing. beta-Catenin, a key component in the canonical Wnt-signaling pathway, is activated in fibrotic processes and wound repair and, as such, could play a role in mediating cellular responses to irradiation. beta-Catenin can form a transcriptionally active complex with members of the Tcf family. A reporter mouse model, in addition to human cell cultures, was used to demonstrate that ionizing radiation activates beta-catenin-mediated, Tcf-dependent transcription both in vitro and in vivo. Furthermore, radiation activates beta-catenin via a Wnt-mediated mechanism, as in the presence of dickkopf-1, an inhibitor of Wnt receptor activation, beta-catenin levels did not increase after irradiation. Fibroblast cell cultures were derived from mice expressing either null or stabilized beta-catenin alleles. Cells expressing stabilized beta-catenin alleles had a higher proliferation rate and formed more colony-forming units than wild-type or null cells after irradiation. Wound healing was studied in these same mice after irradiation. There was a positive correlation between the tensile strength of the wound, the expression levels of type 1 collagen in the skin, and beta-catenin levels. Mice treated with lithium showed increased beta-catenin levels and increased wound strength. beta-Catenin mediates the effects of ionizing radiation in fibroblasts, and its modulation has the potential to decrease the severity of radiation-induced soft tissue complications.
Wound Healing, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Fluorescent Antibody Technique, Mice, Transgenic, Fibroblasts, Collagen Type I, Wnt Proteins, Mice, Tensile Strength, Animals, Humans, TCF Transcription Factors, Cells, Cultured, beta Catenin, Cell Proliferation, Signal Transduction
Wound Healing, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Fluorescent Antibody Technique, Mice, Transgenic, Fibroblasts, Collagen Type I, Wnt Proteins, Mice, Tensile Strength, Animals, Humans, TCF Transcription Factors, Cells, Cultured, beta Catenin, Cell Proliferation, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |