<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The progression from insulin resistance to type 2 diabetes is caused by the failure of pancreatic beta cells to produce sufficient levels of insulin to meet the metabolic demand. Recent studies indicate that nutrient fluctuations and insulin resistance increase proinsulin synthesis in beta cells beyond the capacity for folding of nascent polypeptides within the endoplasmic reticulum (ER) lumen, thereby disrupting ER homeostasis and triggering the unfolded protein response (UPR). Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). We assessed the effect of Chop deletion in multiple mouse models of type 2 diabetes and found that Chop-/- mice had improved glycemic control and expanded beta cell mass in all conditions analyzed. In both genetic and diet-induced models of insulin resistance, CHOP deficiency improved beta cell ultrastructure and promoted cell survival. In addition, we found that isolated islets from Chop-/- mice displayed increased expression of UPR and oxidative stress response genes and reduced levels of oxidative damage. These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in beta cells under conditions of increased insulin demand.
Male, Cell Survival, Apoptosis, Diabetes Mellitus, Experimental, Diet, Mice, Inbred C57BL, Mice, Oxidative Stress, Gene Expression Regulation, Insulin-Secreting Cells, Mutation, Animals, Female, Lipid Peroxidation, Oxidation-Reduction, Gene Deletion, Transcription Factor CHOP, Cell Proliferation
Male, Cell Survival, Apoptosis, Diabetes Mellitus, Experimental, Diet, Mice, Inbred C57BL, Mice, Oxidative Stress, Gene Expression Regulation, Insulin-Secreting Cells, Mutation, Animals, Female, Lipid Peroxidation, Oxidation-Reduction, Gene Deletion, Transcription Factor CHOP, Cell Proliferation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 616 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |