Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cytokinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cytokine
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cytokine
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways

Authors: Xuezhong Liu; Zongping Liu; Lulian Yao; Jianhong Gu; Qian Gao; Wei Liu; Nannan Dai; +4 Authors

Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways

Abstract

Osteoclasts are critical for bone resorption and use podosomes to attach to bone matrix. Osteoprotegerin (OPG) is a negative regulator of osteoclast function that can affect the formation and function of podosomes. However, the signaling pathways that link OPG to podosome function have not been well characterized. Therefore, this study examined the roles of intracellular calcium and MAPKs in OPG-induced podosome disassembly in osteoclasts. We assessed the effects of the intracellular calcium chelator Bapta-AM, ERK inhibitor U0126, and p38 inhibitor SB202190 on OPG-treated osteoclast differentiation, adhesion structures, intracellular free Ca(2+) concentration and the phosphorylation state of podosome associated proteins (Pyk2 and Src). Mouse monocytic RAW 264.7 cells were differentiated to osteoclasts using RANKL (30ng/mL) and M-CSF (25ng/mL). The cells were pretreated with Bapta-AM (5μM), U0126 (5μM), or SB202190 (10μM) for 30min, followed by 40ng/mL OPG for 3h. Osteoclastogenesis, adhesion structure, viability and morphology, intracellular free Ca(2+) concentration and the phosphorylation state of Pyk2 and Src were measured by TRAP staining, scanning electron microscopy, real-time cell analyzer, flow cytometry and western blotting, respectively. OPG significantly inhibited osteoclastogenesis, the formation of adhesion structures, and reduced the amount of phosphorylated Pyk2 and Src-pY527, but increased phosphorylation of Src-pY416. Bapta-AM, U0126, and SB202190 partially restored osteoclast differentiation and adhesion structures. Both Bapta-AM and U0126, but not SB202190, restored the levels of intracellular free Ca(2+) concentration, phosphorylated Pyk2 and Src-pY527. All three inhibitors blocked OPG-induced phosphorylation at Src-pY416. These results suggest OPG disrupts the attachment structures of osteoclasts and activates Src as an adaptor protein that competes for the reduced amount of phosphorylated Pyk2 through calcium- and ERK-dependent signaling pathways. p38 MAPK signaling may have a different role in OPG-induced osteoclast retraction. Our findings potentially offer novel insights into the signaling mechanisms downstream of OPG that affect osteoclast attachment to the extracellular matrix.

Related Organizations
Keywords

Blotting, Western, Imidazoles, Osteoprotegerin, Osteoclasts, Cell Differentiation, Cell Membrane Structures, Actins, Monocytes, Mice, Focal Adhesion Kinase 2, Nitriles, Butadienes, Microscopy, Electron, Scanning, Animals, Calcium, Enzyme Inhibitors, Extracellular Signal-Regulated MAP Kinases, Egtazic Acid, Cells, Cultured, Chelating Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!