
<p>Comparing estimates of evapotranspiration (ET) from different in-situ measurements &#8211; or between in-situ measurements and remote sensing products or modelling outputs &#8211; always entails the challenge of different scales and method-specific uncertainties. Especially when the estimates originate in different research disciplines, addressing and quantifying the various sources of uncertainty of the scaled ET values becomes a difficult task for individual researchers who are not familiar with all the methodological details.</p><p>The BRIDGET toolbox &#8211; developed within the Digital Earth project &#8211; wants to support the integration and scaling of diverse in-situ ET measurements by providing tools for storage, merging and visualisation of multi-scale and multi-sensor ET data. This requires an appropriate metadata description for the various measurements as well as an assessment of method-specific uncertainties which need to be supported by domain experts. We combine these tools in a standalone python package and also implement them in an existing virtual research environment (V-FOR-WaTer).</p><p>Our first use case defines and quantifies the various sources of uncertainty when scaling sap flow values from individual sensor measurements in a tree up to the transpiration estimate of a stand. Comparison estimates come from eddy covariance measurements, lysimeters and remote sensing products.</p>
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
