Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RNAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA
Article . 2006 . Peer-reviewed
Data sources: Crossref
RNA
Article . 2006
RNA
Article
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins

Authors: Belaya, K; Tollervey, D; Kos, M;

FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins

Abstract

Nucleo-cytoplasmic shuttling is an important feature of proteins involved in nuclear export/import of RNAs, proteins, and also large ribonucleoprotein complexes such as ribosomes. The vast amount of proteomic data available shows that many of these processes are highly dynamic. Therefore, methods are needed to reliably assess whether a protein shuttles between nucleus and cytoplasm, and the kinetics with which it exchanges. Here we describe a combination of the classical heterokaryon assay with fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) techniques, which allows an assessment of the kinetics of protein shuttling in the yeast Saccharomyces cerevisiae.

Country
United Kingdom
Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Saccharomyces cerevisiae Proteins, nucleo-cytoplasmic shuttling, Active Transport, Cell Nucleus, Saccharomyces cerevisiae, Kinetics, Protein Transport, Microscopy, Fluorescence, Fluorescence Recovery After Photobleaching, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Green
bronze