
Decision tree construction is a well-studied problem in data mining. Recently, there has been much interest in mining data streams. Domingos and Hulten have presented a one-pass algorithm for decision tree constructions. Their system using Hoeffding inequality to achieve a probabilistic bound on the accuracy of the tree constructed. Gama et al. have extended VFDT in two directions. Their system VFDTc can deal with continuous data and use more powerful classification techniques at tree leaves. Peng et al. present soft discretization method to solve continuous attributes in data mining. In this paper, we revisit these problems and implemented a system sVFDT for data stream mining. We make the following contributions: 1) we present a binary search trees (BST) approach for efficiently handling continuous attributes. Its processing time for values inserting is O(nlogn), while VFDT's processing time is O(n2). 2) We improve the method of getting the best split-test point of a given continuous attribute. Comparing to the method used in VFDTc, it decreases from O(nlogn) to O (n) in processing time. 3) Comparing to VFDTc, sVFDT's candidate split-test number decrease from O(n) to O(logn).4)Improve the soft discretization method to increase classification accuracy in data stream mining.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
