
Developing a practically-robust automatic speech recognition (ASR) is challenging since the model should not only maintain the original performance on clean samples, but also achieve consistent efficacy under small volume perturbations and large domain shifts. To address this problem, we propose a novel WavAugment Guided Phoneme Adversarial Training (wapat). wapat use adversarial examples in phoneme space as augmentation to make the model invariant to minor fluctuations in phoneme representation and preserve the performance on clean samples. In addition, wapat utilizes the phoneme representation of augmented samples to guide the generation of adversaries, which helps to find more stable and diverse gradient-directions, resulting in improved generalization. Extensive experiments demonstrate the effectiveness of wapat on End-to-end Speech Challenge Benchmark (ESB). Notably, SpeechLM-wapat outperforms the original model by 6.28% WER reduction on ESB, achieving the new state-of-the-art.
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
