
pmid: 14644196
Inhibitor of apoptosis proteins (IAPs) are a conserved class of proteins that control apoptosis in both vertebrates and invertebrates. They exert their anti-apoptotic function through inhibition of caspases, the principal executioners of apoptotic cell death. Recent advances in vertebrates and Drosophila have demonstrated that IAPs use ubiquitin conjugation to control the stability, and thus the activity, of select target proteins. The Drosophila IAP1 gene is an instructive example: it employs at least two distinct ubiquitin-dependent mechanisms of protein destruction. The apoptosis-inducing genes grim, reaper and hid modulate these mechanisms, and determine the outcome.
Models, Genetic, Cell Survival, Ubiquitin, Neuropeptides, Apoptosis, Models, Biological, Neoplasm Proteins, Protein Structure, Tertiary, Animals, Drosophila Proteins, Drosophila, Signal Transduction
Models, Genetic, Cell Survival, Ubiquitin, Neuropeptides, Apoptosis, Models, Biological, Neoplasm Proteins, Protein Structure, Tertiary, Animals, Drosophila Proteins, Drosophila, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
