Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detailed EPR Study of Spin Crossover Dendrimeric Iron(III) Complex

Authors: Domracheva N.; Pyataev A.; Vorobeva V.; Zueva E.;

Detailed EPR Study of Spin Crossover Dendrimeric Iron(III) Complex

Abstract

The unusual magnetic behavior of the first dendritic Fe(3+) complex with general formula [Fe(L)2](+)Cl(-)·H2O based on a branched Schiff base has been investigated by electron paramagnetic resonance (EPR) and Mössbauer spectroscopy. EPR displays that complex consists of the three types of magnetically active iron centers: one S = 1/2 low-spin (LS) and two S = 5/2 high-spin (HS) centers with strong low-symmetry and weak distorted octahedral crystal fields. Analysis of the magnetic behavior reflected by I versus T (where I is the EPR lines integrated intensity of the spectrum) demonstrates that the dendritic Fe(3+) complex has sufficiently different behavior in three temperature intervals. The first (4.2-50 K) interval corresponds to the antiferromagnetic exchange interactions between LS-LS, LS-HS, and HS-HS centers. The appearance of a presumable magnetoelectric effect is registered in the second (50-200 K) temperature interval, whereas a spin transition process between LS and HS centers occurs in the third (200-330 K) one. The coexistence of the magnetic ordering, presumable magnetoelectric effect, and spin crossover in one and the same material has been detected for the first time. The Mössbauer spectroscopy data completely confirm the EPR results.

Related Organizations
Keywords

540, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!