<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 15010206
In an attempt to elucidate the molecular basis of neuronal migration and corticogenesis, we performed subtractive hybridization of mRNAs from the upper cortical layers (layer I and upper cortical plate) against mRNAs from the remaining cerebral cortex at E15-E16. We obtained a collection of subtracted cDNA clones and analyzed their 3' UTR sequences, 47% of which correspond to EST sequences, and may represent novel products. Among the cloned sequences, we identified gene products that have not been reported in brain or in the cerebral cortex before. We examined the expression pattern of 39 subtracted clones, which was enriched in the upper layers of the cerebral cortex at embryonic stages. The expression of most clones is developmentally regulated, and especially high in embryonic and early postnatal stages. Four of the unknown clones were studied in more detail and identified as a new member of the tetraspanin superfamily, a putative RNA binding protein, a specific product of the adult dentate gyrus and a protein containing a beta-catenin repeat. We thus cloned a collection of subtracted cDNAs coding for protein products that may be involved in the development of the cerebral cortex.
Cerebral Cortex, Neurons, Genomic Library, DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Membrane Proteins, RNA-Binding Proteins, Cell Differentiation, Nerve Tissue Proteins, Mice, Fetus, Animals, Newborn, Cell Movement, Dentate Gyrus, Animals, Female, Amino Acid Sequence, Growth Substances
Cerebral Cortex, Neurons, Genomic Library, DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Membrane Proteins, RNA-Binding Proteins, Cell Differentiation, Nerve Tissue Proteins, Mice, Fetus, Animals, Newborn, Cell Movement, Dentate Gyrus, Animals, Female, Amino Acid Sequence, Growth Substances
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |