Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clays and Clay Miner...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clays and Clay Minerals
Article . 1986 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantitative Analysis of Mineral Mixtures Using Linear Programming

Authors: Gerald E. Braun;

Quantitative Analysis of Mineral Mixtures Using Linear Programming

Abstract

AbstractThe approximate maximum and minimum amounts of any phase in a complex mineral mixture can be determined by solving a linear programming problem involving chemical mass balance and X-ray powder diffraction (XRD) data. The chemical information necessary is the bulk composition of the mixture and an estimation of the compositional range of each of the minerals in the mixture. Stoichiometric constraints for the minerals may be used to reduce their compositional variation. If only a partial chemical analysis for the mixture is available, the maximum amounts of the phases may still be estimated; however, some or all of the stoichiometric constraints may not apply. XRD measurements (scaled using an internal standard) may be incorporated into the linear programming problem using concentration-intensity relations between pairs of minerals. Each XRD constraint added to the linear programming problem, in general, reduces the difference between the calculated maximum and minimum amounts of each phase. Because it is necessary to define weights in the objective function of the linear programming problem, the proposed method must be considered a model. For many mixtures, however, the solution is relatively insensitive to the objective function weights.An example consisting of a mixture of montmorillonite, plagioclase feldspar, quartz, and opal-cristobalite illustrates the linear programming approach. Chemical information alone was used to estimate the mineral abundances. Because quartz and opal-cristobalite are not chemically distinct, it was only possible to determine the sum, quartz + opal-cristobalite, present in the mixture.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!