Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A theoretical model for fragmentation of viscous bubbly magmas in shock tubes

Authors: Noriko K. Mitani; Takehiro Koyaguchi;

A theoretical model for fragmentation of viscous bubbly magmas in shock tubes

Abstract

A coupled model for one‐dimensional time‐dependent compressible flow and bubble expansion is developed to investigate fragmentation mechanisms of viscous bubbly magmas in shock tubes. Initially a bubbly magma at a high pressure is separated from air at the atmospheric pressure by a diaphragm. As the diaphragm is ruptured, a shock wave propagates into the air, and a rarefaction wave propagates into the bubbly magma. As a result, the bubbly magma is decompressed and expands. Gas overpressure and hoop stress around expanding bubbles are calculated by applying the cell model. It is assumed that the magma fragments and the flow changes from bubbly flow to gas‐pyroclast dispersion when the hoop stress or the gas volume fraction reaches a given threshold. Two types of fragmentation mechanisms are recognized: (1) high‐viscosity magma fragments as the hoop stress reaches the tensile strength of the melt (stress fragmentation) and (2) the hoop stress does not grow in low‐viscosity magma so that fragmentation occurs after bubble expansion when the gas volume fraction reaches a threshold (expansion fragmentation). During stress fragmentation a zone of steep pressure gradient forms just behind the fragmentation surface, which propagates into the magma together with the fragmentation surface. Analytical considerations suggest that the self‐sustained stress fragmentation process can be described by a combination of a traveling‐wave‐type solution in the bubbly flow region and a self‐similar solution in the gas‐pyroclast flow region. Some simple formulae to predict the fragmentation speed (downward propagation velocity of the fragmentation surface) are derived on the basis of these solutions. The formulae are applied to recent experimental results using shock tube techniques as well as Vulcanian explosions in nature.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze