Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1998 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convection under rotation for Prandtl numbers near 1: Küppers-Lortz instability

Authors: Yuchou Hu; Werner Pesch; Guenter Ahlers; Robert E. Ecke;

Convection under rotation for Prandtl numbers near 1: Küppers-Lortz instability

Abstract

The K{umlt u}ppers-Lortz (KL) instability in Rayleigh-B{acute e}nard convection rotated about a vertical axis was studied experimentally using optical-shadowgraph imaging in the rotating frame for dimensionless rotation rates 6{lt}{Omega}{lt}20. Two cylindrical convection cells with radius-to-height ratios {Gamma}=40 and 23 were used. The cells contained CO{sub 2} at 33.1 bar and 16.6 bar with Prandtl numbers {sigma}=0.93 and {sigma}=0.83, respectively. Numerical solutions of the Boussinesq equations with parameter values corresponding to the experiments were obtained for comparison. For {Gamma}=40 and 8{lt}{Omega}{lt}10.5, the initial pattern above onset was time dependent. Its dynamics revealed a mixture of sidewall-nucleated domain-wall motion characteristic of the KL instability and of dislocation-defect motion. For {Omega}{gt}10.5, spontaneous formation of KL domain walls away from the sidewall was observed. For 8{lt}{Omega}{lt}12, there were differences between the two cells very close to onset, but for {epsilon}{approx_gt}0.02 the systems were qualitatively similar. For {Omega}{approx_gt}12 there was no qualitative difference in the behavior of the two cells at any {epsilon}. The average size of a domain containing rolls of approximately the same orientation decreased with increasing {Omega}, and the time dependence speeded up and became dominated by domain-wall propagation. The numerical solutions were qualitatively similar, although there was a tendency for themore » domains to be larger at the same {epsilon} and {Omega}. The replacement of domains of one orientation by those with another led to a rotation in Fourier space which was characterized by a rotation frequency {omega}{sub a} in the frame rotating at angular velocity {Omega}. Quantitative experimental measurements of {omega}{sub a}, of a correlation length {xi}, and of a domain-switching angle {Theta}{sub s} as functions of {epsilon}{equivalent_to}{Delta}T/{Delta}T{sub c}{minus}1 and {Omega} are presented. For 13{approx_lt}{Omega}{approx_lt}18, {Theta}{sub s} was independent of {Omega} and close to 58{degree}. We computed the angle of maximum growth rate {Theta}{sub KL} of KL perturbations, and found it to be 43{degree}, distinctly different from {Theta}{sub s}. The results for {omega}{sub a}({epsilon},{Omega}) over the range 13{approx_lt}{Omega}{approx_lt}20 can be collapsed onto a single curve {tilde {omega}}{sub a}({epsilon}){equivalent_to}{omega}{sub a}({epsilon},{Omega})/{omega}{sub r}({Omega}) by applying an {Omega}-dependent factor 1/{omega}{sub r}. Similar collapse can be accomplished for {tilde {xi}}({epsilon})={xi}({epsilon},{Omega})/{xi}{sub r}({Omega}). An analysis of {tilde {omega}}{sub a}({epsilon}) and {tilde {xi}}({epsilon}) in terms of various functional forms is presented. It is difficult to reconcile the {epsilon} dependence of {tilde {omega}}{sub a} and {tilde {xi}} at small {epsilon} with the theoretically expected proportionality to {epsilon} and {epsilon}{sup {minus}1/2}, respectively. {copyright} {ital 1998} {ital The American Physical Society}« less

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!