
AbstractNucleocytoplasmic transport of macromolecules is regulated by a large multisubunit complex called the nuclear pore complex (NPC). Although this complex is well characterized in animals and fungi, there is relatively little information on the NPC in plants. The suppressor of auxin resistance1 (sar1) and sar3 mutants were identified as suppressors of the auxin-resistant1 (axr1) mutant. Molecular characterization of these genes reveals that they encode proteins with similarity to vertebrate nucleoporins, subunits of the NPC. Furthermore, a SAR3–green fluorescent protein fusion protein localizes to the nuclear membrane, indicating that SAR1 and SAR3 are Arabidopsis thaliana nucleoporins. Plants deficient in either protein exhibit pleiotropic growth defects that are further accentuated in sar1 sar3 double mutants. Both sar1 and sar3 mutations affect the localization of the transcriptional repressor AXR3/INDOLE ACETIC ACID17, providing a likely explanation for suppression of the phenotype conferred by axr1. In addition, sar1 sar3 plants accumulate polyadenylated RNA within the nucleus, indicating that SAR1 and SAR3 are required for mRNA export. Our results demonstrate the important role of the plant NPC in hormone signaling and development.
Cell Nucleus, Arabidopsis Proteins, Recombinant Fusion Proteins, Molecular Sequence Data, Arabidopsis, Plants, Genetically Modified, Nuclear Pore Complex Proteins, R-SNARE Proteins, Phenotype, Plant Growth Regulators, Mutation, Nuclear Pore, Animals, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Signal Transduction
Cell Nucleus, Arabidopsis Proteins, Recombinant Fusion Proteins, Molecular Sequence Data, Arabidopsis, Plants, Genetically Modified, Nuclear Pore Complex Proteins, R-SNARE Proteins, Phenotype, Plant Growth Regulators, Mutation, Nuclear Pore, Animals, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 156 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
