Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Applied Mathematics
Article . 1975 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

The Slip-Dominated Merged Layer Regime for Newtonian Hypersonic Flow Past a Flat Plate

The slip-dominated merged layer regime for Newtonian hypersonic flow past a flat plate
Authors: Bush, William B.;

The Slip-Dominated Merged Layer Regime for Newtonian Hypersonic Flow Past a Flat Plate

Abstract

The rarefied uniform hypersonic flow past the leading edge of a sharp flat plate at zero angle of attack is analyzed on the basis of a continuum model consisting of the Navier–Stokes equations and the velocity-slip and temperature-jump plate boundary conditions. The model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and first and second viscosity coefficients varying as a power of the absolute temperature. For this flow, it is taken that the Newtonian parameter, $\varepsilon = ( {\gamma - 1} )/( {\gamma + 1} )$, goes to zero, and that the freestream Mach number, $M = ( \rho _\infty u_\infty ^2 /\gamma p_\infty )^{1/2} $, the stagnation temperature parameter, $\theta _S = \{ 1 + \varepsilon )/( 1 - \varepsilon )\}\varepsilon M^2 $, and the free-stream Reynolds number (based on the characteristic axial length from the leading edge), $R_L = \rho _\infty u_\infty L/\mu _\infty $, go to infinity.For the viscosity-temperature exponent, $\omega $, satisfying $1...

Keywords

Hypersonic flows

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!