
doi: 10.32657/10356/50594
Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI) are newly emerging techniques in Magnetic Resonance Imaging (MRI). These techniques enable studying connectivity and fibre orientations in different regions of the brain and also detecting abnormalities due to pathological conditions and physiological defects in the brain, which were not possible with conventional MRI techniques. One challenging area of research in DWI is the estimation of multiple diffusion compartments within individual voxels of a DWI image. The concept behind this estimation is that different regions of the brain have different diffusivities, and a single voxel in the image can contain more than one such diffusion component. This report presents our thorough study of multi-compartment estimation problem in DWI, focusing primarily on two compartment estimation problem due to two major types of diffusion compartments – water diffusion and vascular blood flow. There are two methods of estimation proposed in this study, both achieving accurate results when compared with the ground truth values. The algorithms are tested both on synthetic data as well as on actual brain data. MASTER OF ENGINEERING (SCE)
:Engineering::Computer science and engineering::Mathematics of computing::Probability and statistics [DRNTU], :Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision [DRNTU], :Engineering::Computer science and engineering::Computer applications::Life and medical sciences [DRNTU]
:Engineering::Computer science and engineering::Mathematics of computing::Probability and statistics [DRNTU], :Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision [DRNTU], :Engineering::Computer science and engineering::Computer applications::Life and medical sciences [DRNTU]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
