Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plasma membrane localization is required for RGS4 function in Saccharomyces cerevisiae

Authors: S P, Srinivasa; L S, Bernstein; K J, Blumer; M E, Linder;

Plasma membrane localization is required for RGS4 function in Saccharomyces cerevisiae

Abstract

RGS4, a mammalian GTPase activating protein for G protein α subunits, was identified by its ability to inhibit the pheromone response pathway in Saccharomyces cerevisiae . To define regions of RGS4 necessary for its function in vivo , we assayed mutants for activity in this system. Deletion of the N-terminal 33 aa of RGS4 (Δ1–33) yielded a nonfunctional protein and loss of plasma membrane localization. These functions were restored by addition of a C-terminal membrane-targeting sequence to RGS4 (Δ1–33). Thus, plasma membrane localization is tightly coupled with the ability of RGS4 to inhibit signaling. Fusion of the N-terminal 33 aa of RGS4 to green fluorescent protein was sufficient to localize an otherwise soluble protein to the plasma membrane, defining this N-terminal region as a plasma membrane anchorage domain. RGS4 is palmitoylated, with Cys-2 and Cys-12 the likely sites of palmitoylation. Surprisingly, mutation of the cysteine residues within the N-terminal domain of RGS4 did not affect plasma membrane localization in yeast or the ability to inhibit signaling. Features of the N-terminal domain other than palmitoylation are responsible for the plasma membrane association of RGS4 and its ability to inhibit pheromone response in yeast.

Related Organizations
Keywords

Cell Membrane, Green Fluorescent Proteins, Molecular Sequence Data, Palmitic Acid, Proteins, Saccharomyces cerevisiae, Pheromones, Fungal Proteins, Luminescent Proteins, Structure-Activity Relationship, Calcium-Calmodulin-Dependent Protein Kinases, Amino Acid Sequence, Cysteine, RGS Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
bronze