Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry B
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalytic Domains of Phosphodiesterase 5, 6, and 5/6 Chimera Display Differential Dynamics and Ligand Dissociation Energy Barriers

Authors: Jason G, Pattis; Shaan, Kamal; Boyang, Li; Eric R, May;

Catalytic Domains of Phosphodiesterase 5, 6, and 5/6 Chimera Display Differential Dynamics and Ligand Dissociation Energy Barriers

Abstract

The enzyme phosphodiesterase 6 (PDE6) is a critical component of the visual signaling pathway and functions to convert cGMP to GMP. The ability of PDE6 to affect cellular cGMP levels leads to deactivation of cGMP-gated ion channels in both rod and cone cells. PDE6 has been difficult to structurally characterize experimentally, though the structures of the closely related PDE5 and a PDE5/6 chimera have been determined by X-ray crystallography. In this work, we employ a computational approach to study the dynamics of the catalytic domains of PDE6, PDE5, and the PDE5/6 chimera. Through equilibrium molecular dynamics (MD) simulations, we identify a region of PDE6 (α12) to be correlated to distal regions of the enzyme (H- and M-loops), which surround the catalytic center. These correlations are not observed for PDE5, and we speculate that these unique motions in PDE6 may relate to the high catalytic efficiency of PDE6 and the requirement for an endogenous inhibitory subunit (Pγ). We further investigate the ligand binding pathways and energetics by enhanced sampling simulations (metadynamics) using the inhibitor sildenafil and GMP. The energetics and pathways of ligand binding are consistent with the high efficiency of PDE6 and further implicate the α12 region as an important regulatory element for PDE6 functional dynamics.

Related Organizations
Keywords

Cyclic Nucleotide Phosphodiesterases, Type 5, Cyclic Nucleotide Phosphodiesterases, Type 6, Catalytic Domain, Recombinant Fusion Proteins, Thermodynamics, Amino Acid Sequence, Molecular Dynamics Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
bronze