
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype.
/dk/atira/pure/subjectarea/asjc/1300/1311, /dk/atira/pure/subjectarea/asjc/1300/1312, Muscle Fibers, Skeletal, Neuromuscular Junction, Nerve Tissue Proteins, In Vitro Techniques, Muscular Atrophy, Spinal, Mice, Neurofilament Proteins, Genetics, Animals, Humans, Paralysis, Genetics(clinical), Botulinum Toxins, Type A, Cyclic AMP Response Element-Binding Protein, Muscle, Skeletal, Molecular Biology, Mice, Knockout, Motor Neurons, RNA-Binding Proteins, SMN Complex Proteins, /dk/atira/pure/subjectarea/asjc/2700/2716, Survival of Motor Neuron 2 Protein, Mice, Inbred C57BL, Disease Models, Animal, Microscopy, Electron, Phenotype, Microscopy, Fluorescence
/dk/atira/pure/subjectarea/asjc/1300/1311, /dk/atira/pure/subjectarea/asjc/1300/1312, Muscle Fibers, Skeletal, Neuromuscular Junction, Nerve Tissue Proteins, In Vitro Techniques, Muscular Atrophy, Spinal, Mice, Neurofilament Proteins, Genetics, Animals, Humans, Paralysis, Genetics(clinical), Botulinum Toxins, Type A, Cyclic AMP Response Element-Binding Protein, Muscle, Skeletal, Molecular Biology, Mice, Knockout, Motor Neurons, RNA-Binding Proteins, SMN Complex Proteins, /dk/atira/pure/subjectarea/asjc/2700/2716, Survival of Motor Neuron 2 Protein, Mice, Inbred C57BL, Disease Models, Animal, Microscopy, Electron, Phenotype, Microscopy, Fluorescence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 344 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
